Gas exchange in humans

Humans use up a great deal of energy so they must have a very efficient gas exchange system. They are made up of:

- a **respiratory surface** membranes lining the alveoli (air sacs) in the lungs.
- a set of tubes to allow air from the outside to reach the respiratory surface.
 This set of tubes has many branches and is sometimes called the 'bronchial tree'.
- a **blood supply** (carried by the pulmonary artery and pulmonary vein) to carry dissolved gases to and from the respiratory surface.
- a **ventilation system** (the intercostal muscles and the diaphragm) to keep a good flow of air over the respiratory surface.

- Larynx (voice box) air passes through here during breathing. When breathing out, the vocal cords can be made to vibrate. The sounds produced make up our speech.
- **Trachea (windpipe)** tube that carries air towards the lngs. C-shaped rings of cartilage prevent the trachea collapsing during inhalation.
- **Bronchus** first branch from the trachea. There is one bronchus to each lung.
- Bronchiole final, very fine branch leading into the alveolus.
- Alveolus (air sac) these are lined by the membranes where gas exchange takes place. The surface is moist, thin and has an enormous area.

- **Branch of pulmonary artery** delivers deoxygenated blood at high pressure from the right ventricle of the heart.
- Branch of pulmonary vein returns oxygenated blood to the heart for pumping out to the tissues.

- **Cilia** fine 'hairs' on surface of cell. These can be beat in a coordinated way to carry mucus (with trapped microbes and dust) away from lung surfaces.
- **Goblet cell** produces sticky mucus and releases it onto the surface of the cells.
- Basement membrane holds the cells in place.

Breathing is the set of muscular movements that gives the respiratory surface a constant supply of fresh air. This means there is always a concentration gradient between the blood and the air in the alveoli for both oxygen and carbon dioxide. As shown below, breathing is brought about by:

- the action of two groups of muscles the intercostal muscles and the diaphragm
- the properties of the **pleural membranes** that surround the lungs.

During exercise the muscles work hard, and need to release more energy by respiration. Greater volumes of air must therefore be breathed in and out, by:

- increasing the **breathing rate** more breaths per minute
- increasing the **tidal volume** more air per breath.

These two changes can increase the volume of air passing in and out of the lungs from the typical 8 dm³ per minute at rest to 50-60 dm³ per minute during strenuous exercise.

Factor	Effect
Smoking	 Increase, due to the effect of carbon monoxide
Anxiety	 Increase, due to the effect of adrenaline
Drugs	• Some cause an increase eg. amphetamines
	Some cause a decrease eg. alcohol
	 Increased by high CO2 concentration
Environmental	 Sometimes increased by high temperature or
factors	humidity
Altitude	 Increased by low 02 concentration
	Can increase because fat makes lung ventilation
	harder
	• Can decrease if excess body weight is a symptom
Weight	of low activity of the thyroid gland

As well as exercise some other factors affect breathing rate: